Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
उत्तर
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
= `lim_(x -> pi/4) (1 - sin2x)/(sqrt(2) - (sin x + cos x))`
= `lim_(x -> pi/4) (1 - sin2x)/(sqrt(2) - sqrt(1 + sin2))`
Put 1 + sin 2x = t
∴ sin 2x = t – 1
As `x -> pi/4, "t" -> 1 + sin 2 (pi/4)`
∴ `"t" -> 1 + sin pi/2`
∴ t → 1 + 1
∴ t → 2
∴ Required limit
= `lim_("t" -> 2) (1 - ("t" - 1))/(sqrt(2) - sqrt("t"))`
= `lim_("t" -> 2) (2 - "t")/(2^(1/2) - "t"^(1/2))`
= `lim_("t" -> 2) ("t" - 2)/("t"^(1/2) - 2^(1/2))`
= `lim_("t" -> 2) 1/(("t"^(1/2) - 2^(1/2))/("t" - 2)) ...[("Divide Numerator and Denominator"),("by" "t" - 2 "As" "t" -> 2 "," "t" ≠ 2),(therefore "t" - 2 ≠ 0)]`
= `1/(1/2(2)^((-1)/2)`
= `2(2)^(1/2)`
= `2sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.