मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternatives. limx→π2[3cosx+cos3x(2x-π)3] = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =

पर्याय

  • `3/2`

  • `1/2`

  • `-1/2`

  • `1/4`

MCQ

उत्तर

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3] = underline (-1/2)`

Explanation:

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]`

= `lim_(x -> pi/2)(3cos x + 4cos^3x - 3cos x)/(2x - pi)^3`

= `lim_(x -> pi/2) (4cos^3x) /(8(x - pi/2)^3` 

Put `x = pi/2 + h,`

`x - pi/2 = h`

As `x -> pi/2, h -> 0`

= `lim_(x -> pi/2) (4 cos^3x) /(8(x - pi/2)^3` 

= `lim_(h-> 0) (4 cos^3(pi/2 + h))/(8h^3)`

= `lim_(h -> 0) (4(-sin h)^3)/(8h^3)`           ...`[∵ cos(pi/2 + θ) = -sinθ]`

= `-1/2(lim_(h->0)(sin h)/h)^3`

= `-1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.1 | Q I. (7) | पृष्ठ १५८

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x -> 3^+) x/([x])` = ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×