मराठी

Limx→0(sin(α+β)x+sin(α-β)x+sin2αx)cos2βx-cos2αx⋅x - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`

बेरीज

उत्तर

Given, `lim_(x -> 0) ([sin (alpha + beta)x + sin(alpha - beta)x + sin 2alpha * x])/(cos 2betax - cos 2alphax) * x`

= `lim_(x -> 0) ([2 sin alpha x * cos betax + sin 2alpha * x]*x)/(2sin (alpha + beta)x * sin(alpha - beta)x)`   ......`[(because sin C + sin D = 2 sin  (C + D)/2 * cos  (C - D)/2),(cos C - cos D = - 2 sin  (C + D)/2 * sin  (C - D)/2)]`

= `lim_(x -> 0) ([2 sin alphax * cos betax + 2 sin alphax * cos alphax] * x)/(2 sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (2 sin alphax (cos betax + cos alphax)*x)/(2 sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (sin alphax[2 cos((alpha + beta)/2)x * cos((alpha - beta)/2)x]*x)/(sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (sin alphax [2 cos ((alpha + beta)/2)x * cos((alpha - beta)/2)x]*x)/(2 sin((alpha + beta)/2)x * cos((alpha + beta)/2)x) * 2 sin ((alpha - beta)/2)x * cos((alpha - beta)/2)x`   .......`[(because  cos C + cos D = 2 cos  (C + d)/2 cos  (C - D)/2),("and"  sin 2x = 2 sin x cos x)]`

= `lim_(x -> 0) (sin alphax * x)/(2sin((alpha + beta)/2)x sin((alpha - beta)/2) * x)`

= `lim_(x -> 0) 1/2 ((sin alphax)/(alphax) * (alphax) * x)/([(sin ((alpha + beta)/2) x)/(((alpha + beta)/2) * x) xx ((alpha + beta)/2) * x][(sin((alpha - beta)/2)*x)/(((alpha - beta)/2)* x) xx ((alpha - beta))/2 * x])`

= `1/2 * (alphax^2)/(((alpha + beta)/2)x * ((alpha - beta)/2)x)`

= `1/2[alpha/(((alpha + beta)/2)((alpha - beta)/2))]`

= `1/2 * (4alpha)/(alpha^2 - beta^2)`

= `(2alpha)/(alpha^2 - beta^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 48 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×