मराठी

Evaluate: limx→128x-32x-1-4x2+14x2-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`

बेरीज

उत्तर

Given that `lim_(x -> 1/2) ((8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1))`

= `lim_(x -> 1/2) [((8x - 3)(2x + 1) - (4x^2 + 1))/((4x^2 - 1))]`

= `lim_(x -> 1/2) [(16x^2 - 6x + 8x - 3 - 4x^2 - 1)/(4x^2 - 1)]`

= `lim_(x -> 1/2) [(12x^2 + 2x - 4)/(4x^2 - 1)]`

= `lim_(x -> 1/2) (2(6x^2 + x - 2))/(4x^2 - 1)`

= `lim_(x -> 1/2) (2[6x^2 + 4x - 3x - 2])/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2[2x(3x + 2) - 1(3x + 2)])/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2(3x + 2)(2x - 1))/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2(3x + 2))/((2x + 1))`

Taking limit, we have

= `(2(3 xx 1/2 + 2))/(2 xx 1/2 + 1)`

= `(2(7/2))/2`

= `7/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 13 | पृष्ठ २४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


cos (x2 + 1)


`x^(2/3)`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×