Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
उत्तर
Given that `lim_(x -> 1/2) ((8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1))`
= `lim_(x -> 1/2) [((8x - 3)(2x + 1) - (4x^2 + 1))/((4x^2 - 1))]`
= `lim_(x -> 1/2) [(16x^2 - 6x + 8x - 3 - 4x^2 - 1)/(4x^2 - 1)]`
= `lim_(x -> 1/2) [(12x^2 + 2x - 4)/(4x^2 - 1)]`
= `lim_(x -> 1/2) (2(6x^2 + x - 2))/(4x^2 - 1)`
= `lim_(x -> 1/2) (2[6x^2 + 4x - 3x - 2])/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2[2x(3x + 2) - 1(3x + 2)])/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2(3x + 2)(2x - 1))/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2(3x + 2))/((2x + 1))`
Taking limit, we have
= `(2(3 xx 1/2 + 2))/(2 xx 1/2 + 1)`
= `(2(7/2))/2`
= `7/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`x^(2/3)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.