Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
उत्तर
Given that `lim_(x -> 1/2) ((8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1))`
= `lim_(x -> 1/2) [((8x - 3)(2x + 1) - (4x^2 + 1))/((4x^2 - 1))]`
= `lim_(x -> 1/2) [(16x^2 - 6x + 8x - 3 - 4x^2 - 1)/(4x^2 - 1)]`
= `lim_(x -> 1/2) [(12x^2 + 2x - 4)/(4x^2 - 1)]`
= `lim_(x -> 1/2) (2(6x^2 + x - 2))/(4x^2 - 1)`
= `lim_(x -> 1/2) (2[6x^2 + 4x - 3x - 2])/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2[2x(3x + 2) - 1(3x + 2)])/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2(3x + 2)(2x - 1))/((2x + 1)(2x - 1))`
= `lim_(x -> 1/2) (2(3x + 2))/((2x + 1))`
Taking limit, we have
= `(2(3 xx 1/2 + 2))/(2 xx 1/2 + 1)`
= `(2(7/2))/2`
= `7/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.