हिंदी

Evaluate: limx→128x-32x-1-4x2+14x2-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`

योग

उत्तर

Given that `lim_(x -> 1/2) ((8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1))`

= `lim_(x -> 1/2) [((8x - 3)(2x + 1) - (4x^2 + 1))/((4x^2 - 1))]`

= `lim_(x -> 1/2) [(16x^2 - 6x + 8x - 3 - 4x^2 - 1)/(4x^2 - 1)]`

= `lim_(x -> 1/2) [(12x^2 + 2x - 4)/(4x^2 - 1)]`

= `lim_(x -> 1/2) (2(6x^2 + x - 2))/(4x^2 - 1)`

= `lim_(x -> 1/2) (2[6x^2 + 4x - 3x - 2])/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2[2x(3x + 2) - 1(3x + 2)])/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2(3x + 2)(2x - 1))/((2x + 1)(2x - 1))`

= `lim_(x -> 1/2) (2(3x + 2))/((2x + 1))`

Taking limit, we have

= `(2(3 xx 1/2 + 2))/(2 xx 1/2 + 1)`

= `(2(7/2))/2`

= `7/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 13 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


cos (x2 + 1)


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×