Advertisements
Advertisements
प्रश्न
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
विकल्प
x2 – 6x + 9 = 0
x2 – 7x + 8 = 0
x2 – 14x + 49 = 0
x2 – 10x + 21 = 0
उत्तर
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is x2 – 10x + 21 = 0.
Explanation:
Given `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`
∴ `lim_(x -> 2^-) f(x) = lim_(x -> 2^-) (x^2 - 1)`
`lim_(h -> 0) [(2 - h)^2 - 1] = lim_(h -> 0) (4 + h^2 - 4h - 1)`
= `lim_(h -> 0) (h^2 - 4h + 3)`
= 3
And `lim_(x -> 2^+) f(x) = lim_(x -> 2^+) (2x + 3)`
= `lim_(h -> 0) [2(2 - h) + 3]`
= 7
Therefore, the quadratic equation whose roots are 3 and 7 is `x^2 - (3 + 7)x + 3 xx 7` = 0
i.e., `x^2 - 10x + 21` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
`x^(2/3)`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.