Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
उत्तर
`lim_(x -> 0) (cos("a"x) - cos("b"x))/(cos("c"x) - 1)`
= `lim_(x -> 0) (-cos("a"x) + cos("b"x))/(1 - cos("c"x))`
= `lim_(x -> 0) (1 - cos "a"x - 1 + cos "b"x)/(1 - cos "c"x)`
= `lim_(x -> 0) ((1 - cos"a"x) - (1 - cos"b"x))/(1 - cos"c"x)`
= `lim_(x -> 0) (2sin^2 (("a"x)/2) - 2sin^2 ("b"x)/2)/(2sin^2 ("c"x)/2`
= `lim_(x -> 0) ((sin^2 (("a"x)/2) - sin^2 (("b"x)/2))/(x^2))/((sin^2 (("c"x)/2))/(x^2)) ...[("Divide numerator and denominator by" x^2),(because x -> 0"," therefore x ≠ 0 therefore x^2 ≠ 0)]`
= `(lim_(x -> 0) [(sin^2 (("a"x)/2))/x^2 - (sin^2(("b"x)/2))/x^2])/(lim_(x -> 0) (sin^2 (("c"x)/2))/x^2)`
= `(lim_(x -> 0) [(sin ("a"x)/2)/x]^2 - lim_(x -> 0) [(sin ("b"x)/2)/x]^2)/(lim_(x -> 0) [[sin ("c"x)/2)/x]^2`
= `(lim_(x -> 0) [(sin ("a"x)/2)/(("a"x)/2)]^2 * ("a"/2)^2 - lim_(x -> 0) [(sin ("b"x)/2)/(("b"x)/2)]^2 * ("b"/2)^2)/(lim_(x -> 0) [(sin ("c"x)/2)/(("c"x)/2)]^2 * ("c"/2)^2`
= `((1)^2 * "a"^2/4 - (1)^2 * "b"^2/4)/((1)^2 * "c"^2/4`
= `("a"^2/4 - "b"^2/4)/("c"^2/4)`
= `("a"^2 - "b"^2)/"c"^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
x cos x
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.