Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
विकल्प
1
`1/2`
`1/3`
`1/4`
उत्तर
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8)) = 1/3`
Explanation:
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))`
`= lim_(x → π/3) ((sec^2x - 1 - 3)/(sec^3x - 8)) ...[(tan^2 x + 1 = sec^2 x),(∵ tan^2 x = sec^2x - 1)]`
`= lim_(x → π/3) ((sec^2x - 4)/(sec^3x - 8))`
`= lim_(x → π/3) ((sec^2x - (2)^2)/(sec^3x - (2)^3))`
`= lim_(x → π/3) ((secx - 2)(secx + 2))/((sec x - 2)(sec^2 x + 2sec x + 4)) ...[(a^2 - b^2 = (a - b)(a + b)),(a^3 - b^3 = (a - b)(a^2 + ab + b^2))]`
`= lim_(x → π/3) (secx + 2)/(sec^2 x + 2sec x + 4)`
`= (sec π/3 + 2)/((sec π/3)^2 + 2sec π/3 + 4)`
`= (2 + 2)/((2)^2 + 2(2) + 4)`
`= 1/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.