हिंदी

Cos (x2 + 1) - Mathematics

Advertisements
Advertisements

प्रश्न

cos (x2 + 1)

योग

उत्तर

Let `f(x) = cos(x^2 + 1)`   .......(i)

⇒ `f(x + Δx) = cos[(x + Δx)^2 + 1]`  ......(ii)

Subtracting equation (i) from equation (ii) we get

`f(x + Δx) - f(x) = cos[(x + Δx)^2 + 1] - cos(x^2 + 1)`

Dividing both sides by Δx we get

`(f(x + Δx) - f(x))/(Δx) = (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`

⇒ `lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`

f'(x) = `lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`  ......[By definitions of differentiations]

`- 2sin [((x + Δx)^2 + 1 + x^2 + 1)/2]`

= `lim_(Δx - > 0) (sin[((x + Δx)^2 + 1 - x^2 - 1)/2])/(Δx)`    .....`[because cos C - cos D = - 2sin  (C + D)/2 * sin  (C - D)/2]`

`-2 sin [(x^2 + Δx^2 + 2x * Δx + x^2 + 2)/2]`

= `lim_(Δx -> 0) (-2 sin [x^2 + (Δx^2)/2 + x Δx + 1] sin[Δx (Δx + 2x)/2])/(Δx)`

`- 2sin[x^2 + (Δx^2)/2 + x Δx + 1]`

= `lim_(Δx -> 0) (sin [Δx (Δx + 2x)/2])/(Δx[(Δx + 2x)/2]) xx ((Δx + 2x)/2)`

= `lim_((Δx -> 0),(because  Δx [(Δx + 2x)/2] -> 0))  -2sin [x^2 (Δx^2)/2 + xΔx + 1] * (sin[Δx ((Δx + 2x))/2])/(Δx[(Δx + 2x)/2]) xx [(Δx + 2x)/2]` 

Taking limit, we have

= `-2 sin (x^2 + 1) * 1 * (x)`

= `- 2x sin(x^2 + 1)`  ......`[because  lim_(x -> 0) sinx/x = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 43 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×