Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
उत्तर
Given that `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
= `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a)) xx (sqrt(x) + sqrt(a))/(sqrt(x) + sqrt(a))`
= `lim_(x -> a) ((sin x - sin a)(sqrt(x) + sqrt(a)))/(x - a)`
= `lim_(x -> a) ((2 cos (x + a)/2 * sin (x - a)/2)(sqrt(x) + sqrt(a)))/(x - a)`
= `lim_((x -> a),(because (x - a)/2 -> 0)) (2 cos (x + a)/2 * (sin (x - a)/2)/(2 xx (x - a)/2)) (sqrt(x) + sqrt(a))`
= `lim_(x -> a) cos((x + a)/2)(sqrt(x) + sqrt(1))` .....`[because lim_((x - a)/2 -> 0) (sin (x - a)/2)/((x - a)/2) = 1]`
Taking limit we have
= `cos ((a + a)/2)(sqrt(a) + sqrt(a))`
= `cos a xx 2sqrt(a)`
= `2sqrt(a) * cos a`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
`(ax + b)/(cx + d)`
x cos x
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x -> 3^+) x/([x])` = ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.