हिंदी

Coseclimx→0cosecx-cotxx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.

विकल्प

  • `-1/2`

  • 1

  • `1/2`

  • – 1

MCQ
रिक्त स्थान भरें

उत्तर

`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to `1/2`.

Explanation:

Given `lim_(x -> 0) ("cosec" x - cot x)/x`

= `lim_(x -> 0) (1/sinx - cosx/sinx)/x`

= `lim_(x -> 0) (1 - cos x)/(x sin x)`

= `(2 sin^2  x/2)/(x * 2 sin  x/2 cos  x/2)`  ......`[because  sin 2x = 2 sin x cos x]`

= `lim_(x -> 0) (sin  x/2)/(x cos x/2)`

= `lim_(x -> 0)  (tan  x/2)/x`

= `lim_(x -> 0) (tan  x/2)/(2 xx x/2)`

= `1/2 xx 1`

= `1/2`  ......`[because  lim_(x -> 0)  tanx/2 = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 59 | पृष्ठ २४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×