Advertisements
Advertisements
प्रश्न
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
विकल्प
`-1/2`
1
`1/2`
– 1
उत्तर
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to `1/2`.
Explanation:
Given `lim_(x -> 0) ("cosec" x - cot x)/x`
= `lim_(x -> 0) (1/sinx - cosx/sinx)/x`
= `lim_(x -> 0) (1 - cos x)/(x sin x)`
= `(2 sin^2 x/2)/(x * 2 sin x/2 cos x/2)` ......`[because sin 2x = 2 sin x cos x]`
= `lim_(x -> 0) (sin x/2)/(x cos x/2)`
= `lim_(x -> 0) (tan x/2)/x`
= `lim_(x -> 0) (tan x/2)/(2 xx x/2)`
= `1/2 xx 1`
= `1/2` ......`[because lim_(x -> 0) tanx/2 = 1]`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) |x|/x` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.