Advertisements
Advertisements
प्रश्न
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
उत्तर
Given, `lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
= `lim_(x -> pi/4) (tanx(tan^2x - 1))/(cos(x + pi/4))`
= `lim_(x -> pi/4) (tanx (tan^2x - 1))/(cos(x + pi/4))`
= `lim_(x -> pi/4) tan x * lim_(x -> pi/4) [(-(1 - tan^2x))/(cos(x + pi/4))]`
= `-1 xx lim_(x -> pi/4) ((1 - tanx)(1 + tanx))/(cos(x + pi/4))`
= `lim_(x -> pi/4) - (1 + tan x) * lim_(x -> pi/4) ((1 - tanx)/(cos(x + pi/4)))`
= `-(1 + 1) * lim_(x -> pi/4) ((cosx - sin x))/(cosx * cos(x + pi/4))`
= `-2 xx lim_(x -> pi/4) (sqrt(2) (1/sqrt(2) cos x - 1/sqrt(2) sinx))/(cos x * cos (x + pi/4))`
= `-2sqrt(2) lim_(x -> pi/4) ([cos pi/4 * cos x - sin pi/4 sin x])/(cosx * cos(x + pi/4))`
= `lim_(x -> pi/4) (-2sqrt(2) * cos(x + pi/4))/(cosx * cos(x + pi/4))`
= `(-2sqrt(2))/(cos pi/4)` ....(Taking limit)
= `(-2sqrt(2))/(1/sqrt(2))`
= `-2 xx 2`
= – 4.
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.