हिंदी

Limx→π4tan3x-tanxcos(x+π4) - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`

योग

उत्तर

Given, `lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`

= `lim_(x -> pi/4) (tanx(tan^2x - 1))/(cos(x + pi/4))`

= `lim_(x -> pi/4) (tanx (tan^2x - 1))/(cos(x + pi/4))`

= `lim_(x -> pi/4) tan x * lim_(x -> pi/4) [(-(1 - tan^2x))/(cos(x + pi/4))]`

= `-1 xx lim_(x -> pi/4) ((1 - tanx)(1 + tanx))/(cos(x + pi/4))`

= `lim_(x -> pi/4) - (1 + tan x) * lim_(x -> pi/4) ((1 - tanx)/(cos(x + pi/4)))`

= `-(1 + 1) * lim_(x -> pi/4) ((cosx - sin x))/(cosx * cos(x + pi/4))`

= `-2 xx lim_(x -> pi/4) (sqrt(2) (1/sqrt(2) cos x - 1/sqrt(2) sinx))/(cos x * cos (x + pi/4))`

= `-2sqrt(2) lim_(x -> pi/4) ([cos  pi/4 * cos x - sin  pi/4 sin x])/(cosx * cos(x + pi/4))`

= `lim_(x -> pi/4) (-2sqrt(2) * cos(x + pi/4))/(cosx * cos(x + pi/4))`

= `(-2sqrt(2))/(cos  pi/4)`  ....(Taking limit)

= `(-2sqrt(2))/(1/sqrt(2))`

= `-2 xx 2`

= – 4.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 49 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


x cos x


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 0) |sinx|/x` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×