Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
उत्तर
`lim_(x -> 0)(1 - cos"n"x)/(1 - cos"m"x)`
= `lim_(x -> 0) (1 - cos"n"x)/(1 - cos"m"x) xx (1 + cos "n"x)/(1 + cos "n"x) xx (1 + cos"m"x)/(1 + cos"m"x)`
= `lim_(x -> 0) ((1 - cos^2"n"x)(1 + cos"m"x))/((1 - cos^2"m"x)(1 + cos "n"x))`
= `lim_(x -> 0) (sin^2"n"x(1 + cos "m"x))/(sin^2"m"x(1 + cos "n"x))`
= `lim_(x -> 0) (((sin^2"n"x)/("n"^2x^2))(1 + cos "m"x))/(((sin^2"m"x)/("m"^2x^2))(1 + cos "n"x)) xx "n"^2/"m"^2` ...[∵ x → 0, x ≠ 0 ∴ x2 ≠ 0]
= `"n"^2/"m"^2 ([lim_(x -> 0) (sin"n"x)/("n"x)]^2 xx [lim_(x -> 0) (1 + cos "m"x)])/([lim_(x -> 0) (sin"m"x)/("m"x)]^2 xx [lim_(x -> 0) (1 + cos "n"x)])`
= `"n"^2/"m"^2 (1^2*(1 + cos 0))/(1^2*(1 + cos 0)) ...[because x -> 0 therefore "m"x, "n"x -> 0 and lim_(theta -> 0) sintheta/theta = 1]`
= `"n"^2/"m"^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`x^(2/3)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
`lim_(x -> 3^+) x/([x])` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.