Advertisements
Advertisements
प्रश्न
`x^(2/3)`
उत्तर
Let `f(x) = x^(2/3)` ....(i)
`f(x + Δx) = (x + Δx)^(2/3)` .....(ii)
Subtracting equation (i) from (ii) we get
`f(x + Δx) - f(x) = (x + Δx)^(2/3) - x^(2/3)`
Dividing both sides by Δx and take the limit.
`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((x + Δx)^(2/3) - x^(2/3))/(Δx)`
f'(x) = `lim_(Δx -> 0) (x^(2/3) [1 + (Δx)/x]^(2/3) - x^(2/3))/(Δx)` ........[By definition of differentiation]
= `lim_(Δx -> 0) (x^(2/3) [(1 + (Δx)/x)^(2/3) - 1])/(Δx)`
= `lim_(Δx -> 0) (x^(2/3) [(1 + 2/3 * (Δx)/x + ...) - 1])/(Δx)`
[Expanding by Binomial theorem and rejecting the higher powers of Δx as Δx → 0]
= `lim_(Δx -> 0) (x^(2/3) * 2/3 * (Δx)/x)/(Δx)`
= `2/3 x^(2/3 - 1)`
= `2/3 x^((-1)/3)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.