हिंदी

Evaluate the following : limx→π4[(sinx-cosx)22-sinx-cosx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

limxπ4[(sinx-cosx)22-sinx-cosx]

योग

उत्तर

limxπ4[(sinx-cosx)22-sinx-cosx]

= limxπ41-sin2x2-(sinx+cosx)

= limxπ41-sin2x2-1+sin2

Put 1 + sin 2x = t

∴ sin 2x = t – 1

As xπ4,t1+sin2(π4)

t1+sin π2

∴ t → 1 + 1

∴ t → 2

∴ Required limit

= limt21-(t-1)2-t

= limt22-t212-t12

= limt2t-2t12-212

= limt21t12-212t-2  ...[Divide Numerator and Denominatorby t-2 As t2, t2t-20]

= 112(2)-12

= 2(2)12

= 22

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.2 | Q II. (17) | पृष्ठ १५९

संबंधित प्रश्न

Evaluate the following limit.

limx0cosxπ-x


Evaluate the following limit.

limx0xsecx


Evaluate the following limit.

limx0sinax+bxax+sinbxa,b,a+b0


Evaluate the following limit :

limθ0[1-cos2θθ2]


Evaluate the following limit :

limxπ6[2sin2x+sinx-12sin2x-3sinx+1]


Select the correct answer from the given alternatives.

limx0(5sinx-xcosx2tanx-3x2) =


Select the correct answer from the given alternatives.

limxπ2[3cosx+cos3x(2x-π)3] =


Evaluate the following :

limx0[x(6x-3x)cos(6x)-cos(4x)]


Evaluate the following :

limxa[sinx-sinax-a]


Evaluate the following :

limxa[xcosa-acosxx-a]


Evaluate limxaa+2x-3x3a+x-2x


limx0sinxx(1+cosx) is equal to ______.


Evaluate: limx3x2-9x-3


Evaluate: limx124x2-12x -1


Evaluate: limxa(2+x)52-(a+2)52x-a


Evaluate: limx2x4-4x2+32x-8


Evaluate: limx1x7-2x5+1x3-3x2+2


Evaluate: limx0sin22xsin24x


Evaluate: limx01-cos2xx2


Evaluate: limx01-cosmx1-cosnx


Evaluate: limx0sin2x+3x2x+tan3x


Evaluate: limxasinx-sinax-a


x23


limxπ1-sin x2cos x2(cos x4-sin x4)


Show that limx4|x-4|x-4 does not exists


limx0(1+x)n-1x is equal to ______.


limx01-cos4θ1-cos6θ is ______.


limxπ4sec2x-2tanx-1 is equal to ______.


limx0tan2x-x3x-sinx is equal to ______.


If f(x)=tanxx-π, then limxπf(x) = ______.


limx3+x[x] = ______.


If L = limxx2sin 1x-x1-|x|, then value of L is ______.


If limx1x+1tan(πx+12x+2)=aπ-b(a,bN); then the value of a + b is ______.


The value of limx0(4x-1)3sin x24log(1+3x), is ______.


limxπ2[1-tan(x2)](1-sinx)[1+tan(x2)](π-2x)3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.