हिंदी

If f(x)=tanxx-π, then limx→πf(x) = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.

रिक्त स्थान भरें

उत्तर

If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = 1.

Explanation:

Given `f(x) =  lim_(x -> pi) (-tan(pi - x))/(x - pi)`

= `lim_(pi - x -> 0) (-tan(pi - x))/(-(pi - x))`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 77 | पृष्ठ २४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`x^(2/3)`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×