English

If f(x)=tanxx-π, then limx→πf(x) = ______. - Mathematics

Advertisements
Advertisements

Question

If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.

Fill in the Blanks

Solution

If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = 1.

Explanation:

Given `f(x) =  lim_(x -> pi) (-tan(pi - x))/(x - pi)`

= `lim_(pi - x -> 0) (-tan(pi - x))/(-(pi - x))`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 245]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 77 | Page 245

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


`lim_(x -> 0) |x|/x` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


x cos x


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×