Advertisements
Advertisements
Question
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Solution
Given that `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
= `lim_(x -> pi/6) (2[sqrt(3)/2 sin x - 1/2 cos x])/(x - pi/6)`
= `lim_(x -> pi/6) (2[cos pi/6 sin x - sin pi/6 cos x])/(x - pi/6)`
= `lim_((x -> pi/6),(because x - pi/6 -> 0)) (2sin (x - pi/6))/((x - pi/6))` .......`[because lim_(x -> 0) sinx.x = 1]`
= `2 * 1`
= 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.