Advertisements
Advertisements
Question
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
Options
2
`3/2`
`(-3)/2`
1
Solution
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is 2.
Explanation:
Given `lim_(x -> 0) (x^2 cosx)/(1 - cosx)`
= `lim_(x -> 0) (x^2 cosx)/(2sin^2 x/2)` .....`[because 1 - cos x = 2 sin^2 x/2]`
= `lim_(x -> 0) (x^2/4 xx 4 cos x)/(2 sin^2 x/2)`
= `lim_(x -> 0 => x/2 -> 0) ((x/2)^2 * 2 cos x)/(sin^2 x/2)`
= `lim_(x/2 -> 0) ((x/2)/(sin x/2))^2 * 2 cos x`
= 2 cos 0
= `2 xx 1`
= 2 ......`[because lim_(x -> 0) x/sinx = 1]`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 3^+) x/([x])` = ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.