Advertisements
Advertisements
Question
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
Solution
Given `lim_(x -> 4) |x - 4|/(x - 4)`
L.H.L. = `lim_(x -> 4^-) (-(x - 4))/(x - 4) = - 1` ......`[because |x - 4| = -(x - 4) "if" x < 4]`
R.H.L. = `lim_(x -> 4^+) (x - 4)/(x - 4)` = 1 ......`[because |x - 4| = (x - 4) "if" x > 4]`
Since L.H.L. ≠ R.H.L.
Hence, the limit does not exist.
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x -> 3^+) x/([x])` = ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.