English

X cos x - Mathematics

Advertisements
Advertisements

Question

x cos x

Sum

Solution

Let `y = x cos x`  ......(i)

`y + Δy = (x + Δx) cos(x + Δx)`  ......(ii)

Subtracting eq. (i) from equation (ii) we get

`y + Δy - y = (x + Δx) cos(x + Δx) - x cos x`

⇒ `Δy = x cos (x + Δx) + Δx cos (x + Δx) - x cos x`

Dividing both sides by Δx and take the limits,

`lim_(Δx -> 0) (Δy)/(Δx) = lim_(Δx -> 0) (x cos (x + Δx) - x cos x + Δx cos (x + Δx))/(Δx)`

`(dy)/(dx) = lim_(Δx -> 0) (x[cos(x + Δx) - cos x])/(Δx) + lim_(Δx -> 0) (Δx cos(x + Δx))/(Δx)`   ......`["By defination"  lim_(Δx -> 0) (Δy)/(Δx) = (dy)/(dx)]`

= `lim_(Δx -> 0) (x[-2 sin  ((x + Δx + x))/2 * sin  ((x + Δx - x))/2])/(Δx) + lim_(Δx -> 0) cos(x + Δx)`

= `lim_((Δx -> 0),(because  (Δx)/2 -> 0)) (x[-2 sin(x + (Δx)/2) * sin (Δx)/2])/(2 xx (Δx)/2) + lim_(Δx - > 0) cos(x + Δx)`

∴ `(Δx)/2 -> 0` Taking the limits, we have

= `x[- sin x] + cos x`   .......`[because  lim_((Δx)/2 -> 0) (sin  (Δx)/2)/((Δx)/2) = 1]`

= `- x sin x + cos x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 241]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 46 | Page 241

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


`x^(2/3)`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×