Advertisements
Advertisements
Question
x cos x
Solution
Let `y = x cos x` ......(i)
`y + Δy = (x + Δx) cos(x + Δx)` ......(ii)
Subtracting eq. (i) from equation (ii) we get
`y + Δy - y = (x + Δx) cos(x + Δx) - x cos x`
⇒ `Δy = x cos (x + Δx) + Δx cos (x + Δx) - x cos x`
Dividing both sides by Δx and take the limits,
`lim_(Δx -> 0) (Δy)/(Δx) = lim_(Δx -> 0) (x cos (x + Δx) - x cos x + Δx cos (x + Δx))/(Δx)`
`(dy)/(dx) = lim_(Δx -> 0) (x[cos(x + Δx) - cos x])/(Δx) + lim_(Δx -> 0) (Δx cos(x + Δx))/(Δx)` ......`["By defination" lim_(Δx -> 0) (Δy)/(Δx) = (dy)/(dx)]`
= `lim_(Δx -> 0) (x[-2 sin ((x + Δx + x))/2 * sin ((x + Δx - x))/2])/(Δx) + lim_(Δx -> 0) cos(x + Δx)`
= `lim_((Δx -> 0),(because (Δx)/2 -> 0)) (x[-2 sin(x + (Δx)/2) * sin (Δx)/2])/(2 xx (Δx)/2) + lim_(Δx - > 0) cos(x + Δx)`
∴ `(Δx)/2 -> 0` Taking the limits, we have
= `x[- sin x] + cos x` .......`[because lim_((Δx)/2 -> 0) (sin (Δx)/2)/((Δx)/2) = 1]`
= `- x sin x + cos x`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
`x^(2/3)`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.