Advertisements
Advertisements
Question
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
Options
5.00
6.00
7.00
8.00
MCQ
Fill in the Blanks
Solution
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is 6.00.
Explanation:
`sum_(k = 2)^ncos^-1(1/k. 1/(k + 1) + sqrt(1 - 1/k^2)sqrt(1 - 1/(k + 1)^2))`
`sum_(k = 2)^n(cos^-1 1/(k + 1) - cos^-1 1/k) = (cos^-1 1/3 - cos^-1 1/2) + (cos^-1 1/4 - cos^-1 1/3) + .........(cos^-1 1/(n + 1) - cos^-1 1/n)`
= `cos^-1 1/(n + 1) - cos^-1 1/2`
`lim_(n→∞)(cos^-1 1/(n + 1) - cos^-1 1/2) = π/2 - π/3 = π/6` the value of λ is 6.
shaalaa.com
Is there an error in this question or solution?