English

Limx→0|x|x is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`lim_(x -> 0) |x|/x` is equal to ______.

Options

  • 1

  • –1

  • 0

  • Does not exists

MCQ
Fill in the Blanks

Solution

`lim_(x -> 0) |x|/x` is equal to does not exists.

Explanation:

R.H.S. = `lim_(x -> 0^+) |x|/x = x/x` = 1

And L.H.S. = `lim_(x -> 0^-) |x|/x = (-x)/x` = –1

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 238]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 24 | Page 238

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`(ax + b)/(cx + d)`


x cos x


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×