Advertisements
Advertisements
Question
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
Options
2
0
1
–1
Solution
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is 1.
Explanation:
Given `lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x))`
= `lim_(x -> 0) (sinx [sqrt(x + 1) + sqrt(1 - x)])/((sqrt(x + 1) - sqrt(1 - x))(sqrt(x + 1) + sqrt(1 - x))`
= `lim_(x -> 0) (sin x[sqrt(x + 1) + sqrt(1 - x)])/(x + 1 - 1 + x)`
= `lim_(x -> 0) (sin x[sqrt(x + 1) + sqrt(1 - x)])/(2x)`
= `1/2 * lim_(x -> 0) sinx/x [sqrt(x + 1) + sqrt(1 - x)]`
Taking limit, we get
= `1/2 xx 1 xx [sqrt(0 + 1) + sqrt(1 - 0)]`
= `1/2 xx 1 xx 2`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate `lim_(x -> pi/2) (secx - tanx)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
`x^(2/3)`
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
`lim_(x -> 3^+) x/([x])` = ______.