Advertisements
Advertisements
Question
cos (x2 + 1)
Solution
Let `f(x) = cos(x^2 + 1)` .......(i)
⇒ `f(x + Δx) = cos[(x + Δx)^2 + 1]` ......(ii)
Subtracting equation (i) from equation (ii) we get
`f(x + Δx) - f(x) = cos[(x + Δx)^2 + 1] - cos(x^2 + 1)`
Dividing both sides by Δx we get
`(f(x + Δx) - f(x))/(Δx) = (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`
⇒ `lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)`
f'(x) = `lim_(Δx -> 0) (cos[(x + Δx)^2 + 1] - cos(x^2 + 1))/(Δx)` ......[By definitions of differentiations]
`- 2sin [((x + Δx)^2 + 1 + x^2 + 1)/2]`
= `lim_(Δx - > 0) (sin[((x + Δx)^2 + 1 - x^2 - 1)/2])/(Δx)` .....`[because cos C - cos D = - 2sin (C + D)/2 * sin (C - D)/2]`
`-2 sin [(x^2 + Δx^2 + 2x * Δx + x^2 + 2)/2]`
= `lim_(Δx -> 0) (-2 sin [x^2 + (Δx^2)/2 + x Δx + 1] sin[Δx (Δx + 2x)/2])/(Δx)`
`- 2sin[x^2 + (Δx^2)/2 + x Δx + 1]`
= `lim_(Δx -> 0) (sin [Δx (Δx + 2x)/2])/(Δx[(Δx + 2x)/2]) xx ((Δx + 2x)/2)`
= `lim_((Δx -> 0),(because Δx [(Δx + 2x)/2] -> 0)) -2sin [x^2 (Δx^2)/2 + xΔx + 1] * (sin[Δx ((Δx + 2x))/2])/(Δx[(Δx + 2x)/2]) xx [(Δx + 2x)/2]`
Taking limit, we have
= `-2 sin (x^2 + 1) * 1 * (x)`
= `- 2x sin(x^2 + 1)` ......`[because lim_(x -> 0) sinx/x = 1]`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`x^(2/3)`
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.