Advertisements
Advertisements
Question
`(ax + b)/(cx + d)`
Solution
Let `f(x) = (ax + b)/(cx + d)` ......(i)
⇒ `f(x + Δx) = (a(x + Δx) + b)/(c(x + Δx) + d)` .....(ii)
Subtracting equation (i) from equation (ii) we get
`f(x + Δx) - f(x) = (a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d)`
Dividing both sides by Δx and take the limit, we get
`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d))/(Δx)`
⇒ f'(x) = `lim_(Δx -> 0) ((ax + aΔx + b)(cx + d) - (ax + b)(cx + cΔx + d))/([c(x + Δx) + d](cx + d) * Δx)` ......[Using definition of differentiation]
`acx^2 + acΔx * x + bcx + adx + adΔx + bd`
= `lim_(Δx -> 0) (-acx^2 - acΔx * x - adx - bcx - bc * Δx - bd)/((cx + cΔx + d)(cx + d) * Δx)`
= `lim_(Δx -> 0) ((ad - bc)Δx)/((cx + c*Δx + d)(cx + d))`
Taking limit, we have
= `((ad - bc))/((cx + d)(cx + d))`
= `(ad - bc)/(cx + d)^2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
`lim_(x -> 3^+) x/([x])` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.