English

Ax+bcx+d - Mathematics

Advertisements
Advertisements

Question

`(ax + b)/(cx + d)`

Sum

Solution

Let `f(x) = (ax + b)/(cx + d)`  ......(i)

⇒ `f(x + Δx) = (a(x + Δx) + b)/(c(x + Δx) + d)`  .....(ii)

Subtracting equation (i) from equation (ii) we get

`f(x + Δx) - f(x) = (a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d)`

Dividing both sides by Δx and take the limit, we get

`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d))/(Δx)`

⇒ f'(x) = `lim_(Δx -> 0) ((ax + aΔx + b)(cx + d) - (ax + b)(cx + cΔx + d))/([c(x + Δx) + d](cx + d) * Δx)`  ......[Using definition of differentiation]

`acx^2 + acΔx * x + bcx  + adx + adΔx + bd`

= `lim_(Δx -> 0) (-acx^2 - acΔx * x - adx - bcx - bc * Δx - bd)/((cx + cΔx + d)(cx + d) * Δx)`

= `lim_(Δx -> 0) ((ad - bc)Δx)/((cx + c*Δx + d)(cx + d))`

Taking limit, we have

= `((ad - bc))/((cx + d)(cx + d))`

= `(ad - bc)/(cx + d)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 241]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 44 | Page 241

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


`lim_(x -> 3^+) x/([x])` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×