English

Select the correct answer from the given alternatives. limx→π3(tan2x-3sec3 x-8) = - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =

Options

  • 1

  • `1/2`

  • `1/3`

  • `1/4`

MCQ
Sum

Solution

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8)) = 1/3`

Explanation:

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))`

`= lim_(x → π/3) ((sec^2x - 1 - 3)/(sec^3x - 8))       ...[(tan^2 x + 1 = sec^2 x),(∵ tan^2 x = sec^2x - 1)]`

`= lim_(x → π/3) ((sec^2x - 4)/(sec^3x - 8))`

`= lim_(x → π/3) ((sec^2x - (2)^2)/(sec^3x - (2)^3))`

`= lim_(x → π/3) ((secx - 2)(secx + 2))/((sec x - 2)(sec^2 x + 2sec x + 4))  ...[(a^2 - b^2 = (a - b)(a + b)),(a^3 - b^3 = (a - b)(a^2 + ab + b^2))]`

`= lim_(x → π/3) (secx + 2)/(sec^2 x + 2sec x + 4)`

`= (sec  π/3 + 2)/((sec  π/3)^2 + 2sec  π/3 + 4)`

`= (2 + 2)/((2)^2 + 2(2) + 4)`

`= 1/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.1 [Page 158]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


`lim_(x -> 3^+) x/([x])` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×