English

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 7 - Limits [Latest edition]

Advertisements

Chapters

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 7 - Limits - Shaalaa.com
Advertisements

Solutions for Chapter 7: Limits

Below listed, you can find solutions for Chapter 7 of Maharashtra State Board Balbharati for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board.


Exercise 7.1Exercise 7.2Exercise 7.3Exercise 7.4Exercise 7.5Exercise 7.6Exercise 7.7Miscellaneous Exercise 7.1Miscellaneous Exercise 7.2
Exercise 7.1 [Pages 138 - 139]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.1 [Pages 138 - 139]

Exercise 7.1 | Q I. (1) | Page 138

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`

Exercise 7.1 | Q I. (2) | Page 138

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`

Exercise 7.1 | Q I. (3) | Page 138

Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`

Exercise 7.1 | Q II. (1) | Page 138

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`

Exercise 7.1 | Q II. (2) | Page 139

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`

Exercise 7.1 | Q II. (3) | Page 139

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`

Exercise 7.1 | Q II. (4) | Page 139

Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a

Exercise 7.1 | Q III. (1) | Page 139

Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`

Exercise 7.1 | Q III. (2) | Page 139

Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`

Exercise 7.1 | Q III. (3) | Page 139

Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.

Exercise 7.1 | Q III. (4) | Page 139

Evaluate the following limit :

`lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`

Exercise 7.1 | Q III. (5) | Page 139

Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`

Exercise 7.1 | Q III. (6) | Page 139

Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`

Exercise 7.1 | Q III. (7) | Page 139

Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`

Exercise 7.1 | Q III. (8) | Page 139

Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`

Exercise 7.1 | Q III. (9) | Page 139

Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`

Exercise 7.1 | Q IV. (1) | Page 139

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7

Exercise 7.1 | Q IV. (2) | Page 139

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7

Exercise 7.1 | Q IV. (3) | Page 139

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3

Exercise 7.1 | Q IV. (4) | Page 139

In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3

Exercise 7.2 [Page 141]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.2 [Page 141]

Exercise 7.2 | Q I. 1. | Page 141

Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`

Exercise 7.2 | Q I. 2. | Page 141

Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`

Exercise 7.2 | Q I. 3. | Page 141

Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`

Exercise 7.2 | Q I. 4. | Page 141

Evaluate the following limit :

`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`

Exercise 7.2 | Q I. 5. | Page 141

Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`

Exercise 7.2 | Q II. (1) | Page 141

Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`

Exercise 7.2 | Q II. (2) | Page 141

Evaluate the following limit :

`lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`

Exercise 7.2 | Q II. (3) | Page 141

Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`

Exercise 7.2 | Q II. (4) | Page 141

Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`

Exercise 7.2 | Q II. (5) | Page 141

Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`

Exercise 7.2 | Q II. (6) | Page 141

Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`

Exercise 7.2 | Q III. (1) | Page 141

Evaluate the following limit :

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`

Exercise 7.2 | Q III. (2) | Page 141

Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`

Exercise 7.2 | Q III. (3) | Page 141

Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`

Exercise 7.2 | Q III. (4) | Page 141

Evaluate the following limit :

`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`

Exercise 7.2 | Q III. (5) | Page 141

Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`

Exercise 7.3 [Page 143]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.3 [Page 143]

Exercise 7.3 | Q I. (1) | Page 143

Evaluate the following limit:

`lim_(x -> 0)[(sqrt(6 + x + x^2) - sqrt(6))/x]`

Exercise 7.3 | Q I. (2) | Page 143

Evaluate the following limit :

`lim_(x -> 3)[(sqrt(2x + 3) - sqrt(4x - 3))/(x^2 - 9)]`

Exercise 7.3 | Q I. (3) | Page 143

Evaluate the following limit :

`lim_(y -> 0)[(sqrt(1 - y^2) - sqrt(1 + y^2))/y^2]`

Exercise 7.3 | Q I. (4) | Page 143

Evaluate the following limit :

`lim_(x -> 2) [(sqrt(2 + x) - sqrt(6 - x))/(sqrt(x) - sqrt(2))]`

Exercise 7.3 | Q II. (1) | Page 143

Evaluate the following limit :

`lim_(x -> "a") [(sqrt("a" + 2x) - sqrt(3x))/(sqrt(3"a" + x) - 2sqrt(x))]`

Exercise 7.3 | Q II. (2) | Page 143

Evaluate the following limit :

`lim_(x -> 2) [(x^2 - 4)/(sqrt(x + 2) - sqrt(3x - 2))]`

Exercise 7.3 | Q II. (3) | Page 143

Evaluate the following limit :

`lim_(x -> 2)[(sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x - 2)]`

Exercise 7.3 | Q II. (4) | Page 143

Evaluate the following limit :

`lim_(y -> 0) [(sqrt("a" + y) - sqrt("a"))/(ysqrt("a" + y))]`

Exercise 7.3 | Q II. (5) | Page 143

Evaluate the following limit :

`lim_(x -> 0)[(sqrt(x^2 + 9) - sqrt(2x^2 + 9))/(sqrt(3x^2 + 4) - sqrt(2x^2 + 4))]`

Exercise 7.3 | Q III. (1) | Page 143

Evaluate the following limit :

`lim_(x -> 1) [(x^2 + xsqrt(x) - 2)/(x - 1)]`

Exercise 7.3 | Q III. (2) | Page 143

Evaluate the Following limit :

`lim_(x -> 0) [(sqrt(1 + x^2) - sqrt(1 + x))/(sqrt(1 + x^3) - sqrt(1 - x))]`

Exercise 7.3 | Q III. (3) | Page 143

Evaluate the Following limit :

`lim_(x -> 4) [(x^2 + x - 20)/(sqrt(3x + 4) - 4)]`

Exercise 7.3 | Q III. (4) | Page 143

Evaluate the Following limit :

`lim_(z -> 4) [(3 - sqrt(5 + z))/(1 - sqrt(5 - z))]`

Exercise 7.3 | Q III. (5) | Page 143

Evaluate the Following limit :

`lim_(x -> 0)[3/(xsqrt(9  - x)) - 1/x]`

Exercise 7.4 [Page 148]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.4 [Page 148]

Exercise 7.4 | Q I. (1) | Page 148

Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`

Exercise 7.4 | Q I. (2) | Page 148

Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`

Exercise 7.4 | Q I. (3) | Page 148

Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`

Exercise 7.4 | Q I. (4) | Page 148

Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`

Exercise 7.4 | Q II. (1) | Page 148

Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`

Exercise 7.4 | Q II. (2) | Page 148

Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`

Exercise 7.4 | Q II. (3) | Page 148

Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`

Exercise 7.4 | Q III. (1) | Page 148

Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`

Exercise 7.4 | Q III. (2) | Page 148

Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`

Exercise 7.4 | Q III. (3) | Page 148

Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`

Exercise 7.4 | Q III. (4) | Page 148

Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`

Exercise 7.5 [Pages 150 - 151]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.5 [Pages 150 - 151]

Exercise 7.5 | Q I. (1) | Page 150

Evaluate the following :

`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`

Exercise 7.5 | Q I. (2) | Page 150

Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`

Exercise 7.5 | Q I. (3) | Page 150

Evaluate the following :

`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`

Exercise 7.5 | Q I. (4) | Page 150

Evaluate the following :

`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`

Exercise 7.5 | Q I. (5) | Page 150

Evaluate the following :

`lim_(x -> 1) [(1 - x^2)/(sinpix)]`

Exercise 7.5 | Q II. (1) | Page 150

Evaluate the following:

`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`

Exercise 7.5 | Q II. (2) | Page 150

Evaluate the following :

`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`

Exercise 7.5 | Q II. (3) | Page 150

Evaluate the following :

`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`

Exercise 7.5 | Q II. (4) | Page 151

Evaluate the following :

`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`

Exercise 7.5 | Q II. (5) | Page 151

Evaluate the following:

`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`

Exercise 7.6 [Page 154]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.6 [Page 154]

Exercise 7.6 | Q I. (1) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`

Exercise 7.6 | Q I. (2) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`

Exercise 7.6 | Q I. (3) | Page 154

Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`

Exercise 7.6 | Q I. (4) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`

Exercise 7.6 | Q I. (5) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`

Exercise 7.6 | Q II. (1) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`

Exercise 7.6 | Q II. (2) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`

Exercise 7.6 | Q II. (3) | Page 154

Evaluate the following limit : 

`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`

Exercise 7.6 | Q II. (4) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`

Exercise 7.6 | Q II. (5) | Page 154

Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`

Exercise 7.6 | Q II. (6) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`

Exercise 7.6 | Q III. (1) | Page 154

Evaluate the following limit : 

`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`

Exercise 7.6 | Q III. (2) | Page 154

Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`

Exercise 7.6 | Q III. (3) | Page 154

Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`

Exercise 7.6 | Q III. (4) | Page 154

Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`

Exercise 7.6 | Q III. (5) | Page 154

Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`

Exercise 7.7 [Page 157]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Exercise 7.7 [Page 157]

Exercise 7.7 | Q I. (1) | Page 157

Evaluate the following :

`lim_(x -> ∞) [("a"x^3 + "b"x^2 + "c"x + "d")/("e"x^3 + "f"x^2 + "g"x + "h")]`

Exercise 7.7 | Q I. (2) | Page 157

Evaluate the following :

`lim_(x -> ∞) [(x^3 + 3x + 2)/((x + 4)(x - 6)(x - 3))]`

Exercise 7.7 | Q I. (3) | Page 157

Evaluate the following :

`lim_(x -> ∞) [(7x^2 + 5x - 3)/(8x^2 - 2x + 7)]`

Exercise 7.7 | Q II. (1) | Page 157

Evaluate the following :

`lim_(x -> ∞) [(7x^2 + 2x - 3)/(sqrt(x^4 + x + 2))]`

Exercise 7.7 | Q II. (2) | Page 157

Evaluate the following :

`lim_(x -> ∞) [sqrt(x^2 + 4x + 16) - sqrt(x^2 + 16)]`

Exercise 7.7 | Q II. (3) | Page 157

Evaluate the following :

`lim_(x -> ∞) [sqrt(x^4 + 4x^2) - x^2]`

Exercise 7.7 | Q III. (1) | Page 157

Evaluate the following :

`lim_(x -> ∞) [((3x^2 + 4)(4x^2 - 6)(5x^2 + 2))/(4x^6 + 2x^4 - 1)]`

Exercise 7.7 | Q III. (2) | Page 157

Evaluate the following :

`lim_(x -> ∞) [((3x - 4)^3 (4x + 3)^4)/(3x + 2)^7]`

Exercise 7.7 | Q III. (3) | Page 157

Evaluate the following :

`lim_(x -> ∞) [sqrt(x)(sqrt(x + 1) - sqrt(x))]`

Exercise 7.7 | Q III. (4) | Page 157

Evaluate the following :

`lim_(x -> ∞) [((2x - 1)^20 (3x - 1)^30)/(2x + 1)^50]`

Exercise 7.7 | Q III. (5) | Page 157

Evaluate the following :

`lim_(x -> ∞) [(sqrt(x^2 + 5) - sqrt(x^2 - 3))/(sqrt(x^2 + 3) - sqrt(x^2 + 1))]`

Miscellaneous Exercise 7.1 [Pages 158 - 159]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Miscellaneous Exercise 7.1 [Pages 158 - 159]

Miscellaneous Exercise 7.1 | Q I. (1) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =

  • 23

  • 32

  • – 32

  • – 16

Miscellaneous Exercise 7.1 | Q I. (2) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =

  • `56/3`

  • `112/3`

  • `121/3`

  • `28/3`

Miscellaneous Exercise 7.1 | Q I. (3) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 

  • `-2/25`

  • `2/25`

  • `7/25`

  • `-7/25`

Miscellaneous Exercise 7.1 | Q I. (4) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =

  • `(-2)/9`

  • `2/7`

  • `5/9`

  • `2/9`

Miscellaneous Exercise 7.1 | Q I. (5) | Page 158

Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =

  • 1

  • `1/2`

  • `1/3`

  • `1/4`

Miscellaneous Exercise 7.1 | Q I. (6) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =

  • 0

  • 1

  • 2

  • 3

Miscellaneous Exercise 7.1 | Q I. (7) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =

  • `3/2`

  • `1/2`

  • `-1/2`

  • `1/4`

Miscellaneous Exercise 7.1 | Q I. (8) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =

  • log 15

  • log 3 + log 5

  • log 3 . log 5

  • 3 log 5

Miscellaneous Exercise 7.1 | Q I. (9) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =

  • e3 

  • e6 

  • e9 

  • e-3  

Miscellaneous Exercise 7.1 | Q I. (10) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =

  • `3/2`

  • `-5/2`

  • `-1/2`

  • `2/5`

Miscellaneous Exercise 7.1 | Q I. (11) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =

  • 1

  • log 3

  • `3^(pi/2)`

  • 3 log 3

Miscellaneous Exercise 7.1 | Q I. (12) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =

  • `1/"e"^9`

  • `1/"e"^3`

  • `1/9`

  • `1/3`

Miscellaneous Exercise 7.1 | Q I. (13) | Page 158

Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =

  • 3log 3

  • 2log 3

  • (log 3)2 

  • (log 3)3 

Miscellaneous Exercise 7.1 | Q I. (14) | Page 158

Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =

  • log 5 – 4

  • `log  5/4`

  • `log5/log4`

  • `log5/4`

Miscellaneous Exercise 7.1 | Q I. (15) | Page 159

Select the correct answer from the given alternatives.

`lim_(x -> ∞) [((2x + 3)^7 (x - 5)^3)/(2x - 5)^10]` =

  • `3/8`

  • `1/8`

  • `1/6`

  • `1/4`

Miscellaneous Exercise 7.2 [Page 159]

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 7 Limits Miscellaneous Exercise 7.2 [Page 159]

Miscellaneous Exercise 7.2 | Q II. (1) | Page 159

Evaluate the following :

`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`

Miscellaneous Exercise 7.2 | Q II. (2) | Page 159

Evaluate the following :

`lim_(x -> 0)[x]` ([*] is a greatest integer function.)

Miscellaneous Exercise 7.2 | Q II. (3) | Page 159

Evaluate the following :

If f(r) = πr2 then find `lim_("h" -> 0) [("f"("r" + "h") - "f"("r"))/"h"]`

Miscellaneous Exercise 7.2 | Q II. (4) | Page 159

Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`

Miscellaneous Exercise 7.2 | Q II. (5) | Page 159

Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`

Miscellaneous Exercise 7.2 | Q II. (6) | Page 159

Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`

Miscellaneous Exercise 7.2 | Q II. (7) | Page 159

Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`

Miscellaneous Exercise 7.2 | Q II. (8) | Page 159

Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`

Miscellaneous Exercise 7.2 | Q II. (9) | Page 159

Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`

Miscellaneous Exercise 7.2 | Q II. (10) | Page 159

Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`

Miscellaneous Exercise 7.2 | Q II. (11) | Page 159

Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`

Miscellaneous Exercise 7.2 | Q II. (12) | Page 159

Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`

Miscellaneous Exercise 7.2 | Q II. (13) | Page 159

Evaluate the following :

`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`

Miscellaneous Exercise 7.2 | Q II. (14) | Page 159

Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`

Miscellaneous Exercise 7.2 | Q II. (15) | Page 159

Evaluate the following : 

`lim_(x -> ∞) [((2x + 1)^2*(7x - 3)^3)/(5x + 2)^5]`

Miscellaneous Exercise 7.2 | Q II. (16) | Page 159

Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`

Miscellaneous Exercise 7.2 | Q II. (17) | Page 159

Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`

Miscellaneous Exercise 7.2 | Q II. (18) | Page 159

Evaluate the following :

`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`

Miscellaneous Exercise 7.2 | Q II. (19) | Page 159

Evaluate the following :

`lim_(x -> 1) [(4^(x -  1) - 2^x + 1)/(x - 1)^2]`

Miscellaneous Exercise 7.2 | Q II. (20) | Page 159

Evaluate the following :

`lim_(x -> 1) [(sqrt(x) - 1)/logx]`

Miscellaneous Exercise 7.2 | Q II. (21) | Page 159

Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`

Miscellaneous Exercise 7.2 | Q II. (22) | Page 159

Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`

Miscellaneous Exercise 7.2 | Q II. (23) | Page 159

Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`

Miscellaneous Exercise 7.2 | Q II. (24) | Page 159

Evaluate the following :

`lim_(x -> ∞) [(8x^2 + 5x + 3)/(2x^2 - 7x - 5)]^((4x + 3)/(8x - 1))`

Solutions for 7: Limits

Exercise 7.1Exercise 7.2Exercise 7.3Exercise 7.4Exercise 7.5Exercise 7.6Exercise 7.7Miscellaneous Exercise 7.1Miscellaneous Exercise 7.2
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 7 - Limits - Shaalaa.com

Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 7 - Limits

Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board 7 (Limits) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 7 Limits are Concept of Limits, Factorization Method, Rationalization Method, Limits of Trigonometric Functions, Substitution Method, Limits of Exponential and Logarithmic Functions, Limit at Infinity.

Using Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board solutions Limits exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.

Get the free view of Chapter 7, Limits Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×