Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
Solution
`lim_(x -> 0) ((5^x - 1)^2)/((2^x - 1)log(1 + x))`
= `lim_(x -> 0)((5^x - 1)^2/x^2)/(((2^x - 1)*log(1 + x))/x^2) ...[("Divide numerator and"),("denominator by" x^2.),(because x -> 0"," x ≠ 0),(therefore x^2 ≠ 0)]`
= `(lim_(x -> 0) ((5^x - 1)/x)^2)/(lim_(x -> 0) ((2^x - 1)/x)*(log(1 + x))/x`
= `(lim_(x -> 0) (5^x - 1)/x)^2/(lim_(x -> 0) ((2^x - 1)/x)*lim_(x -> 0) (log(1 + x))/x)`
= `(log5)^2/(log2 xx 1) ....[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= `(log5)^2/log2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[(5x + 3)/(3 - 2x)]^(2/x)`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit :
`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the limit:
`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`