Advertisements
Advertisements
Question
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Solution
`lim_(x -> 0)(x(6^x - 3^x))/((2^x - 1)*log(1 + x))`
= `lim_(x -> 0)(x(3^x*2^x - 3^x))/((2^x - 1)*log(1 + x))`
= `lim_(x -> 0) (x*3^x(2^x - 1))/((2^x - 1)*log(1 + x)`
= `lim_(x -> 0) (x*3^x)/(log (1 + x)) ...[("As" x -> 0"," 2^x -> 2^0),("i.e." 2^x -> 1 therefore 2^x ≠ 1),(therefore 2^x - 1 ≠ 0)]`
= `lim_(x -> 0) (3^x)/((log(1 + x))/x`
= `(lim_(x -> 0) 3^x)/(lim_(x -> 0) (log(1 + x))/x`
= `3^0/1 ...[lim_(x -> 0) (log(1 + x))/x = 1]`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =
Evaluate the following :
`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
Evaluate the following limit :
`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`