English

Evaluate the following limit : limx→0[3+x3-x]1x - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`

Sum

Solution

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`

= `lim_(x -> 0) [(1 + x/3)/(1 - x/3)]^(1/x)   ...[("Divide numerator and"),("denominator by 3")]`

= `lim_(x -> 0) (1 + x/3)^(1/x)/(1 - x/3)^(1/x)`

= `lim_(x -> 0) ((1 + x/3)^(3/x xx 1/3))/((1 - x/3)^((-3)/x xx 1/3))`

= `(lim_(x -> 0)[(1 + x/3)^(3/x)]^(1/3))/(lim_(x -> 0) [(1 - x/3)^((-3)/x)]^(-1/3)`

= `"e"^(1/3)/"e"^((-1)/3)  ...[(because x -> 0","  x/3 -> 0"," (-x)/3 -> 0 and),(lim_(x -> 0) (1 + x)^(1/x) = "e")]`

= `"e"^(1/3 + 1/3)`

= `"e"^(2/3)`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.6 [Page 154]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0)[(9^x - 5^x)/(4^x - 1)]`


Evaluate the following: `lim_(x -> 0)[(15^x - 5^x - 3^x +1)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`


Evaluate the following limit : 

`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`


Evaluate the following limit : 

`lim_(x -> 0) [(log(3 - x) - log(3 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[(2^x - 1)^3/((3^x - 1)*sinx*log(1 + x))]`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Evaluate the following limit : 

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______ 


`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following :

`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x-2(5)^x+1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×