English

Evaluate the following limit : limx→0[15x-5x-3x+1x⋅sinx] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`

Sum

Solution

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(xsinx)]`

= `lim_(x -> 0) (5^x * 3^x - 5^x - 3^x + 1)/(xsinx)`

= `lim_(x -> 0) (5^x (3^x - 1) - (3^x - 1))/(xsinx)`

= `lim_(x -> 0) ((3^x - 1)(5^x - 1))/(xsinx)`

= `lim_(x -> 0) (((3^x - 1)/x)((5^x - 1)/x))/((sinx/x))`   ...[∵ x → 0, ∴ x ≠ 0]

= `((log3)(log5))/1   ...[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= (log 3) (log 5).

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.6 [Page 154]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following:

`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`


Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`


Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x  + 1)/x^2]`


Evaluate the following limit : 

`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(3^x + 3^-x - 2)/(x*tanx)]`


Evaluate the following limit : 

`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit :

`lim_(x -> 0) [((49)^x - 2(35)^x + (25)^x)/(sinx* log(1 + 2x))]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 0) [("a"^(3x) - "a"^(2x) - "a"^x + 1)/(x*tanx)]`


The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______ 


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______ 


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


`lim_(x -> 0) (sin^4 3x)/x^4` = ________.


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


`lim_(x -> 0) (15^x - 3^x - 5^x + 1)/(xtanx)` is equal to ______.


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Evaluate the following:

`lim_(x->0) [((25)^x - 2(5)^x + 1)/x^2]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×