Advertisements
Advertisements
Question
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Solution
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
= `lim_(x -> 0) [((5^x - 1) + (3^x - 1) - (2^x - 1))/x]`
= `lim_(x -> 0) [(5^x - 1)/x + (3^x - 1)/x - (2^x - 1)/x]`
= `lim_(x -> 0) (5^x - 1)/x + lim_(x -> 0) (3^x - 1)/x - lim_(x -> 0) (2^x - 1)/x`
= log 5 + log 3 – log 2 ...`[because lim_(x -> 0) ("a"^x - 1)/x = log"a"]`
= `log((5 xx 3)/2)`
= `log(15/2)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0)[(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following: `lim_(x -> 0)[(log(2 + x) - log( 2 - x))/x]`
Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`
Evaluate the following: `lim_(x -> 0) [(2^x - 1)^2/((3^x - 1) xx log (1 + x))]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)((1 - x)^5 - 1)/((1 - x)^3 - 1)`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0) [("a"^(4x) - 1)/("b"^(2x) - 1)]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) ((3^(cosx) - 1)/(pi/2 - x))` =
Evaluate the following :
`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
`lim_{x→∞} ((3x + 3)^40(9x - 3)^5)/(3x + 1)^45` = ______
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
`lim_(x -> 0) (sin^4 3x)/x^4` = ________.
Evaluate the following `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`
Evaluate the limit:
`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`