Advertisements
Advertisements
Question
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Solution
`lim_(x -> 0)(log(4 - x) - log(4 + x))/x`
= `lim_(x -> 0) (log[4(1 - x/4)] - log[4(1 + x/4)])/x`
= `lim_(x -> 0)(log4 + log(1 - x/4) - [log4 log(1 + x/4)])/x`
= `lim_(x -> 0) (log(1 - x/4) - log(1 + x/4))/x`
= `lim_(x -> 0)[(log(1 - x/4))/x - (log(1 + x/4))/x]`
= `lim_(x -> 0) (log(1 - x/4))/((-4)(-x/4)) - lim_(x -> 0) (log(1 + x/4))/(4(x/4)`
= `-1/4 lim_(x -> 0) (log(1 - x/4))/(-x/4) - 1/4 lim_(x -> 0) (log(1 + x/4))/(x/4)`
= `-1/4(1) - 1/4(1) ...[("As" x -> 0"," x/4 -> 0"," (-x)/4 _> 0),(and lim_(x -> 0) (log(1 + x))/x = 1)]`
= `-1/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following: `lim_(x -> 0)[(log(3 - x) - log(3 + x))/x]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`
Evaluate the following Limits: `lim_(x -> 0)[(x(6^x - 3^x))/((2^x - 1)*log(1 + x))]`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Evaluate the following :
`lim_(x -> 0)[("e"^x + "e"^-x - 2)/(x*tanx)]`
If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following :
`lim_(x->0)[((25)^x -2 (5)^x +1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/(x^2)]`
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`