English

Evaluate the following: limx→0[(49)x-2(35)x+(25)xx2] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`

Sum

Solution

`lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`

= `lim_(x-> 0) [((7^2)^x - 2(7 xx 5)^x + (5^2)^x)/x^2]`

= `lim_(x-> 0) [((7^x)^2 - 2 * 7^x xx 5^x + (5^x)^2)/x^2]` 

= `lim_(x -> 0) [(7^x - 5^x)^2/x^2]`

= `lim_(x -> 0) ((7^x - 5^x)/x)^2`

= `lim_(x -> 0) [(7^x - 1 - 5^x - 1)/x]^2`

= `lim_(x -> 0)[(7^x - 1)/x - (5^x - 1)/x]^2`

= `[lim_(x -> 0) (7^x - 1)/x - lim_(x -> 0) (5^x - 1)/x]^2`

= `(log 7 - log 5)^2    ...[lim_(x -> 0) ("a"^x - 1)/x = log"a"]`

= `(log  7/5)^2`.

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - EXERCISE 7.4 [Page 105]

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`


Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`


Evaluate the following Limits: `lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/x]`


Evaluate the following Limits: `lim_(x -> 0)[((5^x - 1)^2)/(x*log(1 + x))]`


Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`


Evaluate the following limit : 

`lim_(x -> 0)[("a"^x + "b"^x + "c"^x - 3)/sinx]`


Evaluate the following limit : 

`lim_(x -> 0) [(6^x + 5^x + 4^x - 3^(x + 1))/sinx]`


Evaluate the following limit : 

`lim_(x -> 0)[(4x + 1)/(1 - 4x)]^(1/x)`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Evaluate the following : 

`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`


If the function

f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`

= 16 , x = 0

is continuous at x = 0, then k = ?


If f: R → R is defined by f(x) = [x - 2] + |x - 5| for x ∈ R, then `lim_{x→2^-} f(x)` is equal to ______ 


The value of `lim_{x→2} (e^{3x - 6} - 1)/(sin(2 - x))` is ______ 


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit :

`lim_(x->0)[(sqrt(6+x+x^2)-sqrt6)/x]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×