Advertisements
Advertisements
Question
Evaluate the following limit :
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
Solution
`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`
= `lim_(x -> 0)[(1 + 7/x x)/(1 - 3/5 x)]^(1/(3x)) ...[("Divide numerator and"),("denominator by 5")]`
= `lim_(x -> 0) (1 + (7x)/5)^(1/(3x))/(1 - (3x)/5)^(1/(3x))`
= `(lim_(x -> 0)[(1 + (7x)/5)^(5/(7x))]^(7/5 xx 1/3))/(lim_(x -> 0) [(1 - (3x)/5)^((-5)/(3x))]^((-3)/5 xx 1/3)`
= `"e"^(7/15)/"e"^((-3)/(15)) ...[(because x -> 0"," (7x)/5 -> 0"," (-3x)/5 -> 0 and),(lim_(x -> 0) (1 + x)^(1/x) = "e")]`
= `"e"^(7/15 + 3/15)`
= `"e"^(10/15)`
= `"e"^(2/3)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following: `lim_(x -> 0) [(3^x + 3^-x - 2)/x^2]`
Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`
Evaluate the following:
`lim_(x ->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the following: `lim_(x -> 0)[((49)^x- 2(35)^x + (25)^x)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`
Evaluate the following Limits: `lim_(x -> 0)(1 + x/5)^(1/x)`
Evaluate the following Limits: `lim_(x -> 0)[(log(1 + 9x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[("a"^(3x) - "a"^(2x) - "a"^x + 1)/x^2]`
Evaluate the following Limits: `lim_(x -> 0)[(log 100 + log (0.01 + x))/x]`
Evaluate the following Limits: `lim_(x -> 0)[(log(4 - x) - log(4 + x))/x]`
Evaluate the following limit :
`lim_(x -> 0) [(9^x - 5^x)/(4^x - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`
Evaluate the following limit :
`lim_(x -> 0) [(8^sinx - 2^tanx)/("e"^(2x) - 1)]`
Evaluate the following limit :
`lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`
Evaluate the following limit :
`lim_(x ->0) [("a"^x - "b"^x)/(sin(4x) - sin(2x))]`
Evaluate the following limit :
`lim_(x -> 0) [((25)^x - 2(5)^x + 1)/(x*sinx)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =
Select the correct answer from the given alternatives.
`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =
Evaluate the following :
`lim_(x -> 1) [("ab"^x - "a"^x"b")/(x^2 - 1)]`
Evaluate the following :
`lim_(x -> 0) [((5^x - 1)^2)/((2^x - 1)log(1 + x))]`
If the function
f(x) = `(("e"^"kx" - 1)tan "kx")/"4x"^2, x ne 0`
= 16 , x = 0
is continuous at x = 0, then k = ?
The value of `lim_{x→-∞} (sqrt(5x^2 + 4x + 7))/(5x + 4)` is ______
lf the function f(x) satisfies `lim_{x→1}(2f(x) - 5)/(2(x^2 - 1)) = e`, then `lim_{x→1}f(x)` is ______
`lim_(x -> 0) (log(1 + (5x)/2))/x` is equal to ______.
The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______
Evaluate the following:
`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`
Evaluate the following `lim_(x->0)[((25)^x - 2(5)^x+1) /(x^2)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit :
`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`
Evaluate the limit:
`lim_(z->2)[(z^2-5x+6)/(z^2-4)]`
Evaluate the following:
`lim_(x->0)[((25)^x - 2(5)^x + 1)/x^2]`