English

Evaluate the following Limits: limx→0[5x-1x] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following Limits: `lim_(x -> 0)[(5^x - 1)/x]`

Sum

Solution

`lim_(x -> 0)[(5^x - 1)/x]`

= log 5    ...`[lim_(x -> 0) ("a"^x - 1)/x = log "a"]`

shaalaa.com
Limits of Exponential and Logarithmic Functions
  Is there an error in this question or solution?
Chapter 7: Limits - MISCELLANEOUS EXERCISE - 7 [Page 106]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 7 Limits
MISCELLANEOUS EXERCISE - 7 | Q II. 7) | Page 106

RELATED QUESTIONS

Evaluate the following: `lim_(x -> 0) [(3 + x)/(3 - x)]^(1/x)`


Evaluate the following: `lim_(x -> 0) [("a"^(3x) - "b"^(2x))/(log 1 + 4x)]`


Evaluate the following: `lim_(x -> 2) [(3^(x/2) - 3)/(3^x - 9)]`


Evaluate the following Limits: `lim_(x -> 0) ("e"^x + e^(-x) - 2)/x^2`


Evaluate the following limit : 

`lim_(x -> 0) [(5^x + 3^x - 2^x - 1)/x]`


Evaluate the following limit : 

`lim_(x -> 0) [(5 + 7x)/(5 - 3x)]^(1/(3x))`


Evaluate the following limit : 

`lim_(x -> 0)[(15^x - 5^x - 3^x + 1)/(x*sinx)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((15^x - 3^x - 5^x + 1)/sin^2x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((3 + 5x)/(3 - 4x))^(1/x)` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(log(5 + x) - log(5 - x))/sinx]` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) [(x*log(1 + 3x))/("e"^(3x) - 1)^2]` =


Select the correct answer from the given alternatives.

`lim_(x→0)[(3^(sinx) - 1)^3/((3^x - 1).tan x.log(1 + x))]` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) [(5^(x - 3) - 4^(x - 3))/(sin(x - 3))]` =


Evaluate the following :

`lim_(x -> 2) [(logx - log2)/(x - 2)]`


The value of `lim_{x→0} (1 + sinx - cosx + log_e(1 - x))/x^3` is ______


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x+1)/x^2]`


Evaluate the following limit :

`lim(x>2)[(z^2 -5z+6)/(z^2-4)]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x -> 0)[((25)^x - 2(5)^x + 1)/x^2]`


Evaluate the following:

`lim_(x->0)[((25)^x -2(5)^x +1)/(x^2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×