Advertisements
Advertisements
Question
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Solution
`lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
= `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x)) xx (3 + sqrt(5 + x))/(1 + sqrt(5 - x)) xx (1 + sqrt(5 - x))/(3 + sqrt(5 + x ))]`
= `lim_(x -> 4)[(9 - (5 + x))/(1 - (5 - x)) xx(1 + sqrt(5 - x))/(3 + sqrt(5 + x))]`
= `lim_(x -> 4)[(4 - x)/(-4 + x) xx (1 + sqrt(5 - x))/(3 + sqrt(5 + x))]`
= `lim_(x -> 4) [(-(x - 4))/(x - 4) xx (1 + sqrt(5 - x))/(3 + sqrt(5 + x))]`
= `lim_(x -> 4)[(-(1 + sqrt(5 - x)))/(3 + sqrt(5 + x))] ...[("As" x -> 4"," x ≠ 4),(therefore x - 4 ≠0)]`
= `(-(1 + sqrt(5 - 4)))/(3 + sqrt(5 + 4))`
= `(-(1 + 1))/(3 + 3)`
= `(-2)/6`
= `-1/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`
Evaluate the following limit :
`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Evaluate the following limit :
`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`
Select the correct answer from the given alternatives.
`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following limit :
`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`