English

Evaluate the following limit : limx→2[x2+x2-4x2-3x2+4] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`

Sum

Solution

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`

Consider, `x^2 + xsqrt(2) - 4 = x^2 + sqrt(2) x - 4`

= `x^2 + 2sqrt(2)x - sqrt(2)x - 4`

= `x(x + 2sqrt(2)) - sqrt(2)(x + 2sqrt(2))`

= `(x + 2sqrt(2)) (x - sqrt(2))`

`x^2 - 3x sqrt(2) + 4 = x^2 - 3sqrt(2)x + 4`

= `x^2 - 2sqrt(2)x - sqrt(2)x + 4`

= `x(x - 2sqrt(2)) - sqrt(2)(x - 2sqrt(2))`

= `(x - 2sqrt(2)) (x - sqrt(2))`

Now, `lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`

= `lim_(x -> sqrt(2)) ((x + 2sqrt(2))(x - sqrt(2)))/((x - 2sqrt(2))(x - sqrt(2))`

= `lim_(x -> sqrt(2)) (x + 2sqrt(2))/(x - 2sqrt(2))  ...[(because  x -> sqrt(2)","  therefore x ≠ sqrt(2)","),(therefore x - sqrt(2)≠ 0)]`

= `(lim_(x -> sqrt(2))(x + 2sqrt(2)))/(lim_(x -> sqrt(2))(x - 2sqrt(2))`

= `(sqrt(2) + 2sqrt(2))/(sqrt(2) - 2sqrt(2))`

= `(3sqrt(2))/(-sqrt(2))`

= – 3

shaalaa.com
Factorization Method
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.2 [Page 141]

RELATED QUESTIONS

Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]` 


Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limit:

`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit:

`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =


Evaluate the following limit :

`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×