Advertisements
Advertisements
Question
Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Solution
`lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
= `lim_(x -> 3) ((x + 5)(x - 3))/((x - 2)(x - 3)`
= `lim_(x -> 3) (x + 5)/(x - 2) ...[("as" x -> 3"," x ≠ 3),(therefore x - 3 ≠ 0)]`
= `(3 + 5)/(3 - 2)`
= 8
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`
Evaluate the following limit :
`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`
Select the correct answer from the given alternatives.
`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =
Evaluate the following limit :
`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`