Advertisements
Advertisements
Question
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Solution
`lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Consider, `"v"^2 + "v"sqrt(2) - 4 = "v"^2 + sqrt(2)"v" - 4`
= `"v"^2 + 2sqrt(2)"v" - sqrt(2)"v" - 4`
= `"v"("v" + 2sqrt(2)) - sqrt(2)("v" + 2sqrt(2))`
= `("v" + 2sqrt(2)) ("v" - sqrt(2))`
`"v"^2 - 3"v" sqrt(2) + 4 = "v"^2 - 3sqrt(2)"v" + 4`
= `"v"^2 - 2sqrt(2)"v" - sqrt(2)"v" + 4`
= `"v"("v" - 2sqrt(2)) - sqrt(2)("v" - 2sqrt(2))`
= `("v" - 2sqrt(2))("v" - sqrt(2))`
∴ `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
= `lim_("v" -> sqrt(2)) (("v" + 2sqrt(2))("v" - sqrt(2)))/(("v" - 2sqrt(2))("v" - sqrt(2))`
= `lim_("v" -> sqrt(2)) ("v" + 2sqrt(2))/("v" - 2sqrt(2)) ...[("As" "v" -> sqrt(2)"," "v" ≠ sqrt(2)),(therefore "v" - sqrt(2) ≠ 0)]`
= `(sqrt(2) + 2sqrt(2))/(sqrt(2) - 2sqrt(2)`
= `(3sqrt(2))/(-sqrt(2)`
= – 3
APPEARS IN
RELATED QUESTIONS
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following limit:
`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` =
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`