Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
उत्तर
`lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Consider, `"v"^2 + "v"sqrt(2) - 4 = "v"^2 + sqrt(2)"v" - 4`
= `"v"^2 + 2sqrt(2)"v" - sqrt(2)"v" - 4`
= `"v"("v" + 2sqrt(2)) - sqrt(2)("v" + 2sqrt(2))`
= `("v" + 2sqrt(2)) ("v" - sqrt(2))`
`"v"^2 - 3"v" sqrt(2) + 4 = "v"^2 - 3sqrt(2)"v" + 4`
= `"v"^2 - 2sqrt(2)"v" - sqrt(2)"v" + 4`
= `"v"("v" - 2sqrt(2)) - sqrt(2)("v" - 2sqrt(2))`
= `("v" - 2sqrt(2))("v" - sqrt(2))`
∴ `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
= `lim_("v" -> sqrt(2)) (("v" + 2sqrt(2))("v" - sqrt(2)))/(("v" - 2sqrt(2))("v" - sqrt(2))`
= `lim_("v" -> sqrt(2)) ("v" + 2sqrt(2))/("v" - 2sqrt(2)) ...[("As" "v" -> sqrt(2)"," "v" ≠ sqrt(2)),(therefore "v" - sqrt(2) ≠ 0)]`
= `(sqrt(2) + 2sqrt(2))/(sqrt(2) - 2sqrt(2)`
= `(3sqrt(2))/(-sqrt(2)`
= – 3
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit:
`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`