Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
उत्तर
`lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
= `lim_(x -> - 3)(x + 3)/((x + 3)(x + 1)`
= `lim_(x -> - 3) 1/(x + 1) ...[("As" x -> -3"," x ≠ - 3),(therefore x + 3 ≠ 0)]`
= `1/(-3 + 1)`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`
Evaluate the following limit :
`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`
Evaluate the following limit :
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
Select the correct answer from the given alternatives.
`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =
Evaluate the following
Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limit:
`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]`