Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
उत्तर
`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
Consider,
x2 – 3ax + 2a2 = x2 – 2ax – ax + 2a2
= x(x – 2a) – a(x – 2a)
= (x – 2a) (x – a)
2x2 – 3ax + a2 = 2x2 – 2ax – ax + a2
= 2x(x – a) – a(x – a)
= (x – a) (2x – a)
∴ `lim_(x -> "a") [1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`
= `lim_(x -> "a") [1/((x - 2"a")(x - "a")) + 1/((x - "a")(2x - "a"))]`
= `lim_(x -> "a") ((2x - "a") + (x - 2"a"))/((x - 2"a")(x - "a")(2x - "a"))`
= `lim_(x -> "a") (3x - 3"a")/((x - 2"a")(x - "a")(2x - "a"))`
= `lim_(x -> "a") (3(x - "a"))/((x - 2"a")(x - "a")(2x - "a"))`
= `lim_(x -> "a") 3/((x - 2"a")(2x - "a")) ...[(because x -> "a""," therefore x ≠ "a"),(therefore x - "a" ≠ 0)]`
= `3/(("a" - 2"a")(2"a" - "a"))`
= `3/((-"a")("a"))`
= `(-3)/"a"^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limit :
`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit :
`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`
Evaluate the following limit :
`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`
Evaluate the following limit :
`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`
Select the correct answer from the given alternatives.
`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit:
`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`