मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→a[1x2-3ax+2a2+12x2-3ax+a2] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`

बेरीज

उत्तर

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`

Consider,

x2 – 3ax + 2a2 = x2 – 2ax – ax + 2a2

= x(x – 2a) – a(x – 2a)

= (x – 2a) (x – a)

2x2 – 3ax + a2 = 2x2 – 2ax – ax + a2 

= 2x(x – a) – a(x – a)

= (x – a) (2x – a)

∴ `lim_(x -> "a") [1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`

= `lim_(x -> "a") [1/((x - 2"a")(x - "a")) + 1/((x - "a")(2x - "a"))]`

= `lim_(x -> "a") ((2x - "a") + (x - 2"a"))/((x - 2"a")(x - "a")(2x - "a"))`

= `lim_(x -> "a") (3x - 3"a")/((x - 2"a")(x - "a")(2x - "a"))`

= `lim_(x -> "a") (3(x - "a"))/((x - 2"a")(x - "a")(2x - "a"))`

= `lim_(x -> "a") 3/((x - 2"a")(2x - "a"))  ...[(because  x -> "a""," therefore x ≠ "a"),(therefore x - "a" ≠ 0)]`

= `3/(("a" - 2"a")(2"a" - "a"))`

= `3/((-"a")("a"))`

= `(-3)/"a"^2`

shaalaa.com
Factorization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.2 [पृष्ठ १४१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`


Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =


Evaluate the following limits

`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7+x^5+160)/(x^3+8)]`


Evaluate the following limits:

`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×