मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternatives. limx→2(x4-16x2-5x+6) = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =

पर्याय

  • 23

  • 32

  • – 32

  • – 16

MCQ

उत्तर

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` = – 32

shaalaa.com
Factorization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.1 | Q I. (1) | पृष्ठ १५८

संबंधित प्रश्‍न

Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]` 


Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(x -> 3)[(x^2 + 2x - 15)/(x^2 - 5x + 6)]`


Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit :

`lim_(x -> sqrt(2)) [(x^2 + xsqrt(2) - 4)/(x^2 - 3xsqrt(2) + 4)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Evaluate the following limit :

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`


Select the correct answer from the given alternatives.

`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Evaluate the following

Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`


Evaluate the following limit :

`lim_("x" -> -2) [("x"^7 + "x"^5 + 160)/("x"^3 +8)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x-> -2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`


Evaluate the following limits:

`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x-> -2)[(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×