मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternatives. limx→-2(x7+128x3+8) = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =

पर्याय

  • `56/3`

  • `112/3`

  • `121/3`

  • `28/3`

MCQ

उत्तर

`112/3`

Explanation;

`lim_(x -> -2)(x^7 + 128)/(x^3 + 8)`

= `(lim_(x -> -2) (x^7 - (- 2)^7)/(x - ( - 2)))/(lim_(x -> -2)(x^3 - ( - 2)^3)/(x - (- 2)))`

= `(7( - 2)^6)/(3(- 2)^2)`

= `112/3    ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

shaalaa.com
Factorization Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.1 | Q I. (2) | पृष्ठ १५८

संबंधित प्रश्‍न

Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]` 


Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`


Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`


Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`


Evaluate the following limit :

`lim_(x -> "a")[1/(x^2 - 3"a"x + 2"a"^2) + 1/(2x^2 - 3"a"x + "a"^2)]`


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =


Evaluate the following limits

`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`


Evaluate the following

Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3 +8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`


Evaluate the following limit:

`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7+x^5+160)/(x^3+8)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following limit:

`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`


Evaluate the following limit:

`lim_(x ->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×