Advertisements
Advertisements
प्रश्न
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
उत्तर
`lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
= `lim_(x -> 2) ((x - 2))/((x - 2)(2x - 3)`
= `lim_(x -> 2) 1/(2x - 3) ...[("As" x -> 2"," x ≠ 2),(therefore x - 2 ≠ 0)]`
= `1/(2(2) - 3)`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`
Evaluate the following limit :
`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit :
`lim_(x -> 1) [(x + 2)/(x^2 - 5x + 4) + (x - 4)/(3(x^2 - 3x + 2))]`
Select the correct answer from the given alternatives.
`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> -2)((x^7 + 128)/(x^3 + 8))` =
Select the correct answer from the given alternatives.
`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following
Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`