Advertisements
Advertisements
प्रश्न
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
उत्तर
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
= `lim_(x -> 1) ((x - 1)(x^2 + x + 1))/((x - 1)(x + 6)`
= `lim_(x -> 1)(x^2 + x + 1)/(x + 6) ...[("As" x -> 1"," x ≠ 1),(therefore x - 1 ≠ 0)]`
= `((1)^2 + 1 + 1)/(1 + 6)`
= `3/7`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit:
`lim_(x -> - 2)[(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following
Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit:
`lim_(x -> -2) [(x^7 + x^5 + 160) / (x^3 + 8)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 +160)/(x^3 + 8)]`
Evaluate the following limit:
`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit:
`\underset{x->2}{lim} [(x^7 + x^5 + 160)/(x^3 +8)]`