Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
उत्तर
`lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
= `lim_(x -> - 3)(x + 3)/((x + 3)(x + 1)`
= `lim_(x -> - 3) 1/(x + 1) ...[("As" x -> -3"," x ≠ - 3),(therefore x + 3 ≠ 0)]`
= `1/(-3 + 1)`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following Limits: `lim_(x -> 3)[(x - 3)/(sqrt(x - 2) - sqrt(4 - x))]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit:
`lim_(z -> 2) [(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(x -> 3) [(x^2 + 2x - 15)/(x^2 - 5x + 6)]`
Evaluate the following limit :
`lim_(x -> 2) [(x^3 - 7x + 6)/(x^3 - 7x^2 + 16x - 12)]`
Evaluate the following limit :
`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
Evaluate the following limits
`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`
Evaluate the following
Limit: `lim_(x->1) [(x^3 - 1 )/ (x^2 + 5x -6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limit:
`lim_(z->2)[(z^2-5z+6)/(z^2-4)]`
Evaluate the following limits:
`lim_(z→2)[( z^2 - 5 z + 6)/(z ^ 2 - 4)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`